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It is shown that tile chaoticity hypothesis recently introduced in statistical 
mechanics, which is analogous to Ruelle's principle for turbulence, implies the 
Onsager reciprocity and the fluctuation-dissipation theorem in various reversible 
models for coexisting transport phenomena. 
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1. I N T R O D U C T I O N  

In ref. 25 we in t roduced  as a principle,  ho ld ing  when the t ime evolu t ion  of  
a system has an empir ica l ly  chaot ic  nature ,  the following: 

Chaot ic  Hypothes is .  A many-par t i c l e  system in a s t a t iona ry  state 
can be regarded ,  for the pu rpose  of  compu t ing  mac roscop ic  proper t ies ,  as 
a smoo th  dynamica l  system with a t ransi t ive Ax iom A g loba l  a t t rac tor .  In 
the reversible case it can be regarded,  for the same purposes ,  as a smoo th  
t ransi t ive Anosov  system. 

In an a t t empt  to make  this pape r  more  accessible, care  has been taken  
to avoid ,  as much  as possible,  rel iance on technical  aspects  of  the theory  
of  Anosov  ahd Axiom A systems: a classical  reference to this theory  is 
ref. 44; for more  special ized references see refs. 1, 42, 37-39, and  2 (for the 
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Anosov systems) and refs. 2 and 40 (for the more  general systems with 
Axiom A attractors).  3 

The evolution of  the system is described by differential equat ions of  
mot ion  in phase space. To be concrete, one can keep in mind the simplest 
of  the (two) classes of  models ( two-dimensional,  for simplicity) that  we 
consider in this paper. It is a model  for diffusion in a mixture of  two chemi- 
cally inert gases whose N =  NI + N2 molecules (with equal masses m and 
respective numbers  Nl = N2) are contained in a box ~ = [ - �89 �89 2 with 
periodic boundary  conditions. They are each subject to a respective exter- 
nal force field E I = E l i  and E ' - = E 2 i  in the x direction. The molecules 
interact via a pair  interaction with a short-range potential  (e.g., a hard-core  
or  a Lennard-Jones  potential)  elastically colliding as well as with fixed 
circular obstacles. The latter are so arranged as to prevent straight-line 
trajectories in the absence of  external fields. 4 The total force (including the 
impulsive force due to the obstacles) on the j t h  particle will be Fj. 

Fur thermore,  the mot ion  is subject to the constraint  that  the total 
energy is constant ,  via a constraint  force law which is ideal in the sense that  
it satisfies Gauss '  principle of  minimal constraint  (see Appendix A1 ). This 
means that, if Ej is the field on the j t h  particle (equal either to E l or  to 
E2), the equat ions of  mot ion  are 

1 
~1/= ~ p/, Oj=Fj+Ej i -~p j  (1.1) 

with = C i .  p/'Z  p]. 
The mot ions  described by (1.I) generate a flow x ~ V,x in phase space 

so that  the time evolution of  an observable F on the trajectory starting at 
x is the function t-* F(V,x). 

We are interested in the asymptot ic  properties of  F(V,x) as t --, oo for 
the initial da ta  x which can be obtained by a r a n d o m  selection with some 
probabil i ty dis t r ibut ion/ to .  In other  words,  we give an initial density dis- 
tribution/~0 on phase space and we want  to s tudy how it evolves in time. 

The asymptot ic  properties will in general depend on the choice of/.to 
and the averages over the time variable t give the stationary state for the 

31 do not known an example of a reversible system with an Axiom A transitive global 
attractor which, as a subsystem, is not a smooth manifold (hence an Anosov subsystem): in 
this sense the second part of the hypothesis is closely related to the first part, i.e., close to 
being a consequence of the first. However, in this paper the latter part of the hypothesis will 
be needed and is used in a literal sense: this is a too strong assumption at large forcing, but 
here we only consider small forcing; see ref. 4. 

4 This is used only to ensure that at least when the mutual interactions vanish the motion of 
each of the particles is "chaotic. ''(~6) The total force (including the impulsive force due to the 
obstacles) on the jth particle will be Fj. 
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evolution V,, provided they are uniquely defined, i.e., provided that for almost 
all choices o f x  with distribution/~0 the averages exist and are x independent. 
In the latter case the stationary state is a stationary probability distribution p :  
to stress that it is dependent on #o we call it the statistics lz of #0- 

In many applications it is more convenient to regard the evolution as a 
discrete transformation defined on a restricted phase cg of observed events, 
also called timing events (which could be, for instance, the occurrence of a 
microscopic binary "collision"). The time evolution, or the dynamics, then 
becomes a map S o f f f  into itself. The map S is derived by solving the differen- 
tial equations of motion of the system, which gives us a flow on phase space 
that will be called V,: the timing events cg have to be thought of as a surface 
transverse to the flow. If t(x) is the time between the timing event x and the 
successive one Sx, then V,~x)x = Sx. Note that, for the intermediate times, the 
points V,x are not timing events (i.e., they are not in ~g) 0 < t < t(x). s 

The notion of statistics r of/~0 carries over unchanged to the discrete 
evolution and the above chaotic hypothesis is assumed in such a context. 
When referring to phase space, unless stated otherwise, we think of a phase 
space cg consisting of timing events and of a map S on cg defining the time 
evolution. The smoothness of the Anosov system holds for all the coor- 
dinates and parameters on which the system equations depend. 

The chaotic hypothesis implies, as a mathematical consequence, that 
for most distributions /z 0 of  the initial data x the distribution /J exists. 
However, the choice of the initial data with distribution/z 0 proportional to 
the volume measure on ~f plays a special role, because in the case of 
Hamiltonian systems such a distribution is generated naturally via the 
microcanonical ensemble. 

For  instance, one can read that (translating symbols into the present 
notation), ~-'6) "the appropriate objects of study of a statistical mechanics of 
time dependent phenomena are the random processes F(V ,x )  with initial 
distribution of  x, p E(x) (the microcanonical distribution), for all energies of 
interest and for all gross variables F of interest" (italics added). 6 

5 This is natural, as the observations are often timed by "remarkable" events, like events between 
which the system evolution can be exactly, or almost exactly, computed; technically this has 
the advantage of  reducing the dimension of phase space by one unit and of eliminating a coor- 
dinate responsible for a zero Lyapunov exponent, which is always desirable, when possible. 

6 Although I disagree with elevating to a philosophical principle that the "interesting initial 
data" are those that one gets by selecting them with a distribution which is, as often said, 
"absolutely continuous with respect to the phase space volume," i.e., it is given by a density 
on phase space, I will adopt it here because it is obvious that, whether one agrees or not, 
it is of fundamental interest to understand the statistics of initial data chosen at random with 
a distribution proportional to the phase space volume. Other random choices may have to 
wait until the latter is properly understood. 
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In the physics literature the existence of the distribution/.t is, in fact, 
assumed in general, very often (very) tacitly, but sometimes explicitly, and 
it can be stated formally as a "law" by the following (extension) of the 
zeroth law, c451 gibing a global property of the motions generated by initial 
data chosen randomly with distribution /l 0 proportional to the volume 
measure on cg: 

E x t e n d e d  Zeroth Law. A dynamical system (~, S) describing a 
many-particle system (or a continuum such as a fluid) generates motions 
that admit a statistics it in the sense that, given any (mooth) macroscopic 
observable F defined on the points .x" of the phase space ~g, the time average 
of F exists for all/to-randomly chosen initial data x and is given by 

] .&I--I 

where/t  is an S-invariant probability distribution on cg. 
The chaotic hypothesis was proposed by Ruelle in the case of fluid tur- 

bulence, and it is extended to nonequilibrium many-particle systems in 
ref. 24. If one assumes it, then it follows that the zeroth law holds~42"2"37-4~ 
however, it is convenient to regard the two statements as distinct because 
the hypothesis we make is "only" that one can suppose that the system is 
Axiom A or Anosov for "practical purposes": this leaves open the possibility 
that it is not strictly speaking that such and some ("negligible in the thermo- 
dynamic limit") corrections may be needed to the predictions obtained by 
using the hypothesis. 

From now on only reversible systems will be considered in this paper: 
they are dynamical systems such that there is an isometric map i of phase 
space such that i2= 1 and iS= S- ' i :  note that in the case of (1.1) the time 
reversal transformation exists and it is simply the usual i(q, p ) =  (q, -p ) .  

In ref. 25 the generality of the hypothesis is discussed and in refs. 24 
and 25 we derived, as a rather general consequence, predictions testable by 
numerical experiment in systems with few degrees of freedom (by definition 
here few means "accessible to numerical experiments" designed for the 
specific purpose of testing the hypothesis, i.e., ~ 102).  The most relevant 
feature of the prediction, which is a large-deviation theorem or fluctuation 
theorem for systems with reversible dynamics, is that it is parameter fi'ee. 
A drawback is that the prediction is not testable directly in really large 
systems ("real systems" with ~ 102o degrees of freedom). 

From a historical point of view Ruelle's original proposal (1973 at 
least) and the question of whether the "chaotic hypothesis" could be tested 
on real experiments, even with few particles, remained open: the question 
was implicitly posed in ref. 16, but the first attempt at a test is in ref. 12, 
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which contains a really new idea, subsequently made precise and developed 
in refs. 24 and 25. 

In this paper we show, through examples, that the chaotic hypothesis 
implies quite generally, in systems with reversible dynamics, the Onsager 
reciprocity and the fluctuation-dissipation theorem: see ref. 9 for a classical 
general discussion of the reciprocity relations, see ref. 5, Appendix A, 
pp. 187-200, and ref. 43 for a kinetic derivation; see also refs. 10, 13, and 
29 for recent developments. A very nice introduction and an exposition of 
the basic ideas can be found in ref. 8. The ideas of the present paper can 
be applied also to systems relevant for the theory of developed tur- 
bulence. (22) 

In Sections 2 and 3 we introduce the models which will be used to 
illustrate our general ideas; in Section 4 we discuss the relevant mathemati- 
cal facts about reversible Anosov systems and derive the basic expression 
for the Sinai-Bowen-Ruelle distribution (SRB distribution), which shows 
that the latter can be considered as the nonequilibrium analog of the equi- 
librium ensembles (as its expression bears a striking analogy with the 
familiar Boltzmann Gibbs distributions described by suitable weights on 
phase space cells). 

The models we consider share the following properties: 

1. They depend on parameters measuring the size of external driving 
forces (which may be reversible force fields or temperature differences) 
which we call e = (a, b, c,...). 

2. They have a reversible thermostatting mechanism that keeps the 
energy from growing. 

3. They have a variation per unit time of the phase space volume 
described by a function cr(x) on phase space that can be naturally identified 
with an entropy generation per unit time. 

Hence in our models one can unambiguously identify the thermo- 
dynamic forces e and the conjugate flows j, because there is a well-defined 
microscopic entropy generation rate g to be used in the defining relation(9~: 

j__ = ( 0 : ~ ) e ,  zee=(a,b,c,.. .) (1.3) 

where ( . ) e  denotes the average with respect to the statistics p for the 
motions developing in the fields e. While the above definition is in principle 
different from the microscopic definition of flow, corresponding more to a 
macroscopic description, we expect them to coincide. This is indeed the 
case here, as can be seen from (5.11) below. 
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On a heuristic basis one accepts a priori that in time-reversible systems 
the phase space contraction rate is proportional to the entropy creation 
rateJ I) Then (1.3) acquires a remarkable generality: it allows us to define 
the conjugate pairs of thermodynamic forces and thermodynamic flows, by 
combining the well-known Onsager prescription with the definition in 
ref. 41. If the thermodynamic forces are actually identical to external forces 
acting on the system (rather than just functions of them, as is usual in 
many shear flow models ~x2"7)) then a should be expected to be necessarily 
the sum of the products of the currents J~ divided by kB T times the forces 
z: a = Z _ . ( J z / k B T ) z ;  this should make the agreement between (1.3) and 
what one would expect look less miraculous; see (5.11) below. In particular, 
this applies to thermostatted systems, which can be regarded as limits of 
Gaussian thermostats as in the shear flow models of refs. 12 and 7. 

The label e in the relation j~ = (O~a)e  stresses that the quantity Jo is 
evaluated at nonzero external forces e so that the time average will depend 
on the value of such forces and it will coincide (with probability I, by the 
extended zeroth law) with the average with respect to the stationary dis- 
tribution appearing in (1.2), i.e., the SRB distribution. 

Then it makes sense to define the coefficients La.b=Obja[~=o and to 
ask whether the Onsager relations hold, i.e., whether 

La, o = OojQle= ~ L____ O,jble=o = Lb, o (1.4) 

Note that evaluating the derivatives o f j  requires considering the averages 
defining jQ, Jb in nonvanishing external forces e ~ O, hence it requires using 
the SRB distribution, and all the information that we have on it derives 
from the above chaotic hypothesis. 

In Section 5, I give a proof, whose full mathematical rigor still rests on 
a mathematical conjecture (Section 5) on Anosov systems (that I hope to 
address elsewhere), of the validity of the fluctuation-dissipation relation 
and of the above Onsager reciprocity in the models introduced in Sections 
2 and 3. The generality of the argument, which seems largely model inde- 
pendent, will also emerge. 

Thus, at least in the models considered, the Onsager reciprocity holds 
as a consequence of the chaotic hypothesis: I regard this not as a better 
derivation of reciprocity, but rather as a further confirmation of the validity 
of the chaotic hypothesis (at least in the models considered). The Onsager 
reciprocity is one of the few noncontroversial results in nonequilibrium 
statistical mechanics: therefore it is reassuring that it is in some sense built 
into the chaotic hypothesis as well, since the latter has the ambition of 
representing a general law. It can thus be used in a way analogous to the 
heat theorem of Boltzmann, ~]8) which he employed to test the "correctness" 
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of mechanical models of thermodynamics (a concept that he called 
orthodicity and that seems to have fallen into obliviont~8)). 

Comments and a brief comparison with the classical derivations (that 
apply to our models as well) are presented in Section 6. 

2. A D I F F U S I O N  P R O B L E M  

We consider a mixture of two chemically inert gases introduced as the 
example described in Section 1; see (1.1). 

The future time average of the total momentum P and of the dissipa- 
tion ~, considered after (1.1), ( P ) +  r  and (0c)+ >~0 t4t) and expected to 
be nonzero if (E x, E2)~0 ,  ~4~) are expected to be attained exponentially 
fast, while the "conjugate" variable C, the center-of-mass position, will be 
expected to evolve with zero Lyapunov exponent (and to behave asymp- 
totically as ( C )  + = [ 1/(N1 + N 2 ) m ] ( P )  + t + const). 

The phase space contraction per unit time is 

y =  [ 2 ( N , + N z ) -  1]a  (2.1) 

We call Q the work per unit time performed by the forces ocp/, so that 
the phase space contraction rate in the configuration x is (to leading order 
in N) 2Ne(x), i.e., 

E1NldI(X) + E2N2d2(x) Q 
ks  T(x) - kB T 

where k B is Boltzmann's constant, ks T(x) is the kinetic energy per particle, 
al(x), az(x) are the horizontal coordinates of the centers of mass Cl, Cz of 
the two species, and all(X), ~/2(x) are the corresponding velocities. Thus the 
phase space contraction rate can be interpreted as 1/kB times the entropy 
creation rate (at least if E I, E 2 are so small that the center-of-mass horizon- 
tal velocities are small compared to the root mean square velocities). 

We expect that the future time average of the total momentum P and 
of the dissipation 0~ wil be some ( P )  + =~ 0 and (0c) + > 0 if (E I, E 2) :/= 0. It 
is reassuring that such a property can be rigorously established in the 
models studied in ref. 6 (one thermostatted particle only, interacting wih 
fixed obstacles and a constant field) at small forcing. Furthermore, it is 
possible to prove on rather general grounds that (0c)+ >~0, see [41], in 
systems including the ones considered here. 
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The above model is closely related to the color diffusion model con- 
sidered in ref. 3. A very important feature of the model is its time rever- 
sibility: the map i(p, q) = ( - p ,  q) has the property that it is an isometry of 
phase space such that i S=S-~ i  and i2=  1. 

3. A HEAT C O N D U C T I O N - E L E C T R I C A L  C O N D U C T I O N  MODEL 

As a second model, we consider a modification of model 4 of ref. 25, 
inspired by ref. 30; see also ref. 36 for a more general perspective on 
constrained systems. This is a model for a heat conducting and electrically 
conducting gas. In a box ~ = [ - 2 L -  H, 2L + H ]  x [ - L ,  L]  (the dimen- 
sions are arbitrary and no special meaning should be attached to them, 
they merely reflect the shape drawn in Fig. 1 ) are enclosed N particles with 
mass m, interacting via a rather general pair potential, like a hard-core 
potential with a tail or via a Lennard-Jones potential, and they are subject 
to a constant force field (electric field) Ei in the x direction; as in the 
previous model the particles also collide with fixed obstacles so arranged 
that no collisionless straight path can exist. The boundary conditions are 
periodic in the horizontal direction and reflecting in the vertical direction. 

Adjacent to the box ~ there are two boxes ~ + ,  .~_ containing N+ = N_ 
particles interacting with each other via a hard-core interaction and with 
the particles in ~ via a pair interaction (e.g., with potential equal to 
the one between the particles in ~) ,  but are separated from the latter by 
a reflecting wall. The sizes and the location of the three boxes can be 
changed as one wishes and they are fixed only for definiteness. 

The model name is motivated because we imagine other forces to act 
on the system: they are the minimal forces (in the sense of Gauss' minimal 
constraint principle, see Appendix A) necessary to enforce the following 
constraints: 

1. The total kinetic energy in the "hot plate" ~+  and that in the 
"cold plate" ~ _  are constrained to be N+kBT + and N _ k B T _ ,  respec- 
tively, where T and T+ = T_ +~T,  ~T>~0, are the temperatures of the 
plates. 

N 

/3 

Fig. I. 



Chaotic Hypothesis 907 

2. The total energy U in the box M is constrained to stay constant. 

The equations of motion are, assuming hard core pair forces Fj: 

111 

Pi=F.i+Ez(qj)i-~ Pi-~x-x-(qj) P j -  ~Z~(qj) Pj 

(3.1) 

where X:e and ;(_+ are the characteristic functions of the regions ~ and .r 
and 0 t + ~  and ~ are multipliers defined so that for some T_+ 

N+ P] -- N+ k~ T+, ~ X~(qj) ~m = U 
2 Z_+(qj)2-ran-- - - 

j = t  j = l  

(3.2) 

are exact constants of motion, U = NkB T .  
We suppose for simplicity (see, however, Remark 1 in Section 6) that 

the system in ~ is kept at a constant total energy U and at constant 
reservoir temperatures T_+. In this case call Q+,  Q_ ,  and Qo the work per 
unit time performed by the forces e + Z + Pj, c~_ X - Pj, and c~Zp j, respectively. 

Let &~ E, ~ o ,  ~eo_, s and L- a_ denote, respectively, the work per 
unit time performed by the field E or by the particles in the thermostats 
.8+, ~ _  on the gas in M, or by the gas in M on the thermostats N+,  ~ _ .  
Then the imposed conservation laws give 

- Qo + ~eE+ Lz+ +s  = 0 *--~ U =  const 

9 

- Q +  + Lz~ = 0 '--* Z =N+kBT+ 
qj  E .a2 + 

p)- 
- Q _ + L - a ~  +-, ~ ~m=N-kB  T-  

qj  E .~r 

(3.3) 

s o  that one easily finds [-by differentiating (3.2) with respect to time and by 
applying the'equations of motion (3.1)] expressions for ~+,  e _ ,  cc 

2'E + s + s - Qo 
0 f . =  

,.~o Q +_ 

o~+_ = 2N+_ kB T+_ - 2N+_ k B T+_ 

(3.4) 
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and the phase space contraction per unit time, or 1/k B times the entropy 
creation per unit time, is in the configuration x 

y(x) = (2N_+ - 1 )(ct+ + ct_ ) + ( 2 N -  1 )~ (3.5) 

A key remark (J. Lebowitz, private communicat ion) is that 7 - 0  if 
E = J +  - J _  =0.  

The above model also shares the feature that it is time reversible, and 
the isometric map  i(p, q ) = ( - p ,  q) is again such that i S = S - ~ i  and i2=  1. 

4. THE SRB D ISTRIBUTION 

The chaotic hypothesis of Section 2 allows us to represent the SRB 
distribution in a simple form, by using Markov partitions. 142~ We consider 
only transitive reversible Anosov systems, although many concepts make 
sense for more general systems with chaotic attractors. 

The notion of Markov partition is a mathematically precise version of 
the intuitive idea of coarse graining. We just recall here the main properties 
of Markov partitions. For  a discussion of the intuitive meaning and the 
connection with the coarse graining see refs. 21 and 4. 

1. A parallelogram will be a small set with a boundary consisting of 
pieces of the stable and unstable manifolds of the map S joined together as 
described below. The smallness has to be such that parts of the manifolds 
involved look essentially "flat": i.e., the sizes of the sides have to be small 
compared to the smallest radii of curvature of the unstable manifolds 
WU(x) =- W.~ or of the stable manifolds WS(x) - W~. as x varies in rg. 

Therefore let ~ be a length scale small compared to the minimal 
(among all x) curvature radii of the stable and unstable manifolds. Let A u 
and A s be small (and "small" means of size ~ )  connected surface elements 
on W~(x) and WS(x) containing x. We define a parallelogram E in the phase 
space cg, to be denoted by A ~ x A s, with center x and axes A u, A s as follows. 

Consider ~ E A u and r/~ A s and suppose that the point z, denoted ~ x r/, 
such that the shortest path joining ~ and Jl formed by a path on the stable 
manifold W~ joining ~ to - and by a path on the unstable manifold W u - q 

joining z to r/, is uniquely defined. This will be so if 3 is small enough and 
if A", A s are small enough compared to ~ as we assume (because the stable 
and unstable manifolds are "smooth"  and transverse). 

The set E =  A ~ x A s of all the points generated in this way when 4, r/ 
vary arbitrarily in A u, A s is called a parallelogram (or rectangle), provided 
the boundaries OA u, OA S of A ~ and A s as subsets of W~(x) and WS(x), 
respectively, have zero surface area on the manifolds on which they lie. The 
sets O ~ E - A U x O A  s and OsE=OAUxd s will be called the unstable or 
horizontal and stable or vertical sides of the parallelogram E. 
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Consider a partition do = ( E  1 ..... E4~-) of cg into ~ rectangles Ej with 
pairwise disjoint interiors. We call 0udo - Uj auEj and 0sdo - Uj OsEj respec- 
tively the unstable boundary of do and the stable boundary of d ~ or also the 
horizontal and vertical boundaries of do, respectively. 

2. We say that do is a Markov partition if the transformation S acting 
on the stable boundary of do maps it into itself (this means SOsdo ~ Osdo ) and 
if, likewise, the map S-~ acting on the unstable boundary maps it into itself 
(S-lOudo cO,r  

The actual construction of the SRB distribution then proceeds from 
the important result of the theory of Anosov systems expressed by a 
remarkable theorem. (2) 

T h e o r e m .  Every Anosov system admits a Markov partition do. 

C o m m e n t s .  (a) If the reversibility property holds, it is clear that 
ido is also a Markov partition. This follows from the definition of Markov 
partition and from the fact that reversibility implies 

W.~. = i W,~,. (4.1) 

(b) The definition of a Markov partition also implies that the inter- 
section of two Markov partitions is a Markov partition; hence it is clear 
that if a transitive Anosov system is reversible (i.e., there is an isometry i 
such that iS=S-~ i  and i 2 =  1) ,  there are Markov partitions do that are 
reversible in the sense that do = ig, i.e., if Eje do, there is j '  such that 
iEj = Ej, ~ do. 

(c) The usefulness of the Markov partitions comes from the 
possibility that they provide of representing the points of cs as infinite 
strings of symbols (in a more useful way than representing them, for 
instance, as the strings of digits that give the value of their coordinates). 

This is simply achieved by associating with x e cr the string j = 
{Jk} ~ -o~. such that Skx E Ej~.. The invertibility of the map between x ~ cg 
and the compatible or allowed sequences, i.e., the sequences j such that the 
interior of SEjk intersects the interior of Ejk+. is a well known (and easy) 
consequence of the definition of Markov partition. The correspondence is 
in fact one to one with some obvious exceptions: namely, to each sequence 
j with the above compatibility property there corresponds one x; conver- 
sely, if x is not on a boundary of some of the E e do nor on the image of 
a boundary under a power of S, then x admits only one symbolic represen- 
tation. The points on the boundaries or visiting, in their evolution, the 
boundaries of course have several (but finitely many) symbolic representa- 
tions, just in the same way as the decimal representation of a number is 
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unique for most numbers: the ones which end with infinitely many successive 
9's admit two representations. 

The correspondence x ~--~j between points x ~ c,g and their history, or 
symbolic representation, j as a compatile sequence will be denoted x = x(j) 
(symbolic code). 

(d) If we define the compatibily matrix, or intersection matrix, C o. by 
setting C~j = 1 in the interior of Ej intersects the interior of SEi and C,j = 0 
otherwise, then the assumed transitivity implies that there is an iterate q of 
C such that all elements of C q are positive (i.e., SqEj has interior inter- 
secting E k for all pairs j, k simultaneously). 

(e) Consider the partition gg  = 0_~g s - J g  obtained by intersecting 
the images under S k, k = - M ,  .... M, of do. Then dog is still a Markov parti- 
tion and it is time-reversal invariant if do is [see (b) above]. Note that the 
parallelograms of d~ can be labeled by the strings of symbols J - g  ..... Jg 
and they consist of the points x such that Skx e Ejk for - - M  ~< k ~ M. In 
other words, the parallelograms consists of those points x which, in their 
time evolution, visit at time k the parallelogram Ejk. 

(f) If F(x) is a function on phase space (observable), then we can 
regard it as a function F(x(j))  on symbolic sequences. An observable F is 
local if it "depends exponentially little" on the history symbols Jk with large 
k: i.e., if F ( x ( j ) ) - F ( x ( j ' ) )  tends to zero exponentially fast with the maxi- 
mum number k such that j and j' agree on the sites with label h with 
Ihl ~< k. A simple condition on F guaranteeing its locality is that F is H61der 
continuous in x. 

We now construct a probability distribution on cg by defining it as a 
probability distribution on the space of the compatible strings j and then 
by interpreting it as a distribution on the phase space ~. 

1. For  this purpose we first pick a point, which we call the center, 
.xS._,,,....,j,l in each Ej_M,....jM with nonempty interior simply by considering the 
compatible string which is obtained by continuing the string J-M ..... Jg "to 
the right" into a string Jg, Jg+~ .... and to the "left" into a string 
.... J--g-~, J--M in a such way that the whole string j is compatible (i.e., 
such that there is a point x such that Skx E EA. for all k) and, furthermore, 
the entries of the continuation strings depend only on the value of Jg and 
J-M, respectively. 

In general, given J+g, there will be many choices of the continuation 
strings: which one we actually take is irrelevant. We impose, however, the 
further constraint that the continuation is made in a "time-reversible way," 
i.e., we choose the continuations so that if x is the center of Ej, then ix is 
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the center of iEj. A further restriction (not necessary in the following, but 
very natural) that one could consider is imposing that the continuation 
string to the right ofjM or tO the left of j - M  agree identically after finitely 
many steps. Note that the existence of the continuation strings and the 
possibility of imposing the above restrictions on them are immediate conse- 
quences of the transitivity property of the compatibility matrix C. 

2. We then define, given ~ > 0, 

r / 2  - -  1 

ff~,T(x) = I-I Au(Six) (4.2) 
j = - r / 2  

where A,(x)  is the local expansion coefficient of the surface element of the 
unstable manifold at x, i.e., it is the Jacobian determinant of the transfor- 
mation S regarded as a map of W~ into W].,.. Likewise we define A~(x) and 
A~,~(x) as the corresponding quantities obtained by regarding S as a map 
of the stable manifold W~. to W~,,.. 

3. Finally we define a distribution PM.~ on cg by "giving" to each set 
Ej_,,,....j M e g~ a probability proportional to 

A,7.~(-x)_,,,,.,..JM) ri/-~(-x3_,,,.....J,) 

where 

6(x) ~f sin ~9(x) = rio(X) 

is the sine of the angle between the stable and the unstable manifolds at x 
and ri~( x ) = ri( S~/'-x). 

More precisely, we define the distribution/xM,~ so that the integral of 
a smooth function F is 

B - -  I . 

I~ ltM,~(X ) d~r Z j  Au.~(xj) 6~-l(xj) F(xj) F(x) 
�9 Au, Ax~ ) ri~'(-'9) (4.3) 

where j is a shorthand notation for J -M ..... JM and xj=xj_,,~,....j,,, is the 
"center" chosen above in Ej e d~ No relation is assumed here between M 
and r, although in the applications we shall (naturally) taken M =  3/2, as 
this simplifies the discussion considerably. 

The distribution BM.~ is very interesting because it is an approximation 
(a very good one) of the SRB distribution. In fact in refs. 14, 24, and 25 
the following theorem is shown to be a reformulation (convenient, 
although trivially equivalent) of a basic theorem by Sinai: 
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T h e o r e m .  If (oK, S) is a transitive Anosov system, the SRB distribu- 
tion kt exists and the/J average of a local function [see (f) above] F is 

f, ll(dx) F(x) = lim / llM.,(dx) F(x) (4.4) 
f ,  

Furthermore, in (4.3) the factor ~-;~(xg) could be replaced by ~:(xj) with 
z any pre-fixed real number (e.g., z = 0). The limits can be interchanged. 

The original statement is that/~ exists and it is a Gibbs state with 
potential log A~-~(x): see refs. 2, 37-40, and 42 for a discussion of this form 
of the statement. In ref. 40 the latter statement is extended to cover the case 
in which (~g, S) has a global transitive Axiom A attractor: the discussion in 
refs. 19 and 20 shows that the above theorem extends, unchanged, to such 
cases. The extra factor ~ with z--  - 1  was absent in refs. 24 and 25, where 
z was chosen equal to 0 (an admissible alternative choice). 

The possibility of fixing z arbitrarily, in spite of the apparently strong 
modification it introduces, is easily seen by examining the proof of 
(4.4). (19'2~ The proof is based on the interpretation of (4.3) as a probability 
distribution on the space of the compatible strings. In this interpretation 
one immediately recognizes that (4.3) corresponds to a finite-volume Gibbs 
distribution for a suitable short-range Hamiltonian defined on the space of 
compatible strings. An extra factor O~(xj) corresponds to considering the same 
Gibbs distribution just with a different bounary condition, which becomes 
irrelevant in the limit as r---, ~ because one-dimensional Gibbs states with 
short-range interactions do not have phase transitions and therefore are 
insensitive to changes in the boundary conditions. Different choices of the 
center points also correspond to different choices of boundary conditions. 

The choice z = - 1  is much better than z = 0  because it leads to 
simpler formulas and arguments: we shall call (4.3) a balanced approxima- 
tion to the SRB distribution because, as we shall see, it is rem#~iscent of a 
probability distribution satisfying the detailed balance (which, however, is 
not satisfied in our models, except in zero forcing, i.e., in equilibrium). 

In (4.4) with M >> r/2 the choice of the point xj in the parallelograms 
of gu  can be arbitrary, and it does not matter that xj is really chosen as 
said above or just anywhere in Ej_M.....jM [because the variation of the 
weights (4.2) is in this case negligible, provided M -  r/2 --, ~ fast enough]. 

The extra properties that we need are that gm is reversible (see above), 
i.e., iEj = Ej, ~ gm (for a suitable j ' )  and that, as a consequence of the rever- 
sibility [via (4.1) and the isometric nature of the time reversal map i and 
the validity of y (x)=  -7(ix)  for the underlying differential equations], 

.~u,~(ix) = ff~_~ (x), 6o(X)=Oo(iX), 6~(x) = O_~(ix) (4.5) 



Chaotic Hypothesis 913 

which are identities(25); for the definitions of A s, -~s,, see the lines following 
(4.2). Furthermore, the volume measure and the expansion and contraction 
rates are related by 

6~(x) _ e-~'~ ~..~(x) ~.~(x) 2s,~(x) ,~-]~x)= (4.6) 

where t o is the average time interval between successive timing events and 
the phase space volume contraction for a single transformation is written 
e -'~ thus defining a(x) and #,(x): 

#~(x )  dee 1 , / 2 - l  
= -  ~ a(Srx) (4.7) 

T r = - - r / 2  

The condition (4.6) is obtained from the relation Au(x) As(x) 
6(Sx)/~(x) = e -'~ by evaluating it on the points Skx, k = - r / 2  ..... r / 2 -  1 
and multiplying the results. 

If the time interval t(x) between the timing event x e c# and the 
successive one is very small and if its fluctuations can be neglected together 
with those of y(x) [see (2.1), (3.5)] (within the same time interval), then 
one simply has a ( x ) = y ( x ) .  Note that in all cases with any reasonable 
definition of timing events the time t(x) will tend to zero in the thermo- 
dynamic limit [as O(N-1) ] ,  but also y will tend to infinity as O(N). 

More generally there is a simple relation between the function a(x) 
above and the function ~,(x) which describes the phase space contraction 
rate in the differential equations giving rise to the map S [ see (2.1), (3.5)], 
namely 

a(x) = 7(Q,x) dt (4.8) 

But the use of (4.8) is quite clumsy and one can always think that the timing 
events are chosen, artificially, much closer than the natural to = O(1/N) 
and observed at constant time intervals so that no difference really exists 
between ),(x) and a(x). If necessity arises one can always use the precise 
relation (4.8), at the expense of some formal algebraic complications in the 
intermediate ~teps of our fothcoming deductions. 

5. APPLICATIONS TO THE MODELS. ONSAGER 
RECIPROCITY, FLUCTUATION-DISSIPATION THEOREM 

In this section we neglect for simplicity of exposition the difference 
between a(x) and y(x), i.e., we suppose that t(x)= to is constant and that 

822/84/5-6-2  
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y is constant on the path traveled in the time interval t(x): this simplifies 
the algebra considerably and the reader should have no trouble checking 
that the proper relation (4.8) could be consistently used leading to no 
corrections to the final results below (because in the end we shall set 
E=0). 

Relation (4.3) has the form of a statistical average and we shall try to 
use it in the "same" way as in equilibrium statistical mechanics. We shall 
first study here the two currents Jh,/7 = 1, 2, generated by the pair of fields 
Eh in the diffusion model of Section 2. 

The two currents are, where Ph and vh are, the density and average 
velocity of the species h, 

UhZje{h ) pj ' i  )-~4P)/m Oe,,t7 (5.1) 
JI'=Pt'Vh=L2 Nhm L2(2N-- 1) 

where j e  {h} means that j is a species-h particle, quantities of O(N -~) 
have been neglected [see (2.1)], and a is 1/kB times the entropy production 
rate [see (4.6)-(4.8)]. Hence we define T(x), for each configuration x, by 
Zj (P~/Zm)=NjBT(x) and [by (1.4)] 

d ~ r 2 N - - 1  / Jz, \ ,. 1 ZjA~(x/)O~-'(x/)Oe, e~(x/) 
Jh - 2N \ ~ / =  nm -~  -==--~--" 1 7 ~ . . ~ i i , . ~  (5.2) . . . .  L- ZjA~.r(,[/) 5~- (xj) 

where 6(x)=(I/r)Z~/2__-_)~/:~(S"x) [see (4.7)]. If we recall (4.3) with 
�89  we see that Jh can be regarded as the SRB average of Jh/kBT, 
h = l , 2 .  

This expression is similar to the formula derived from the generating 
function of the Helfand moments in refs. 27 and 28, but it is not the same 
because in ref. 28 the SRB is represented by using the noion of (e, v)- 
separated sets (which are a somewhat more primitive or less concrete 
version of the parallelograms of the Markov partitions). 

We shall also define l .... l~., through 

2 ~ ( x )  O~-l(x) =e ~z'.'c'), 2~.,(x) O7_J,(x) = e ~/'.'c') (5.3) 

(4.6) implies lu,~:(x)-ls.~.(x)=to6~.(x). Hence we see that, if so that 
Ok - aE,, 

1 Z.,- 2~.~(xv) 6f'(xA[a,,k,~r(x.,.) + rak/u.AXj) a,,~Ax,-)] 
O,j,, = ~2 Ej 2~.~ (x]) J~ '(xj) 

1 ~ j  - - -1  . Au.r(Xj)  t~r I(Xj) raklu.~(xj-) 

L -~ Ej  2f3Ixj)  6;- (.~/) 
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xZj A--~ .... (xj) 63" ~(-~3) Oh~.(xj) 
Zj ~7~(xj) 6;-'(xj) 

| "t" 
= F  ( o , , ~ )  + ~ ( ( aklu.. O,,~.) - ( o~t...) ( a , ,~)  ) (5.4) 

Here we have interpreted the derivatives with respect to Eh of dr(x) and 
lu.~(x) by regarding x as E independent. However, this is not quite correct: 
in fact it is clear that we must consider such functions as defined on the 
attractor, not on the full phase space. The attractor depends on E: it can 
in fact be identified with the unstable manifold I~o.Of a fixed point O or 
of a periodic orbit O (see ref. 25, Section 4): hence the point xj, which has 
to be throught of as a point on the attractor, will change with E even 
though it keeps the same symbolic representation (note that the Markov 
partition changes with E although the compatibility matrix does not, by 
the structural stability theorem of Anosov, Ijl at least if E is small). 

In taking the derivatives with respect to E of lu.~(xj) and in defining 
the current as Oeh6~(.x ]) there are therefore additional proportional to OEhX. 
The latter quantity can be considered as a function of the symbolic 
history of x, i.e., as the function Oehx(j) and ref. 22 makes the following 
conjectured: 

Conjec tu re .  The function 0~,,x(j) is a local function in the sense of 
the second theorem in Section4 for all Anosov systems, or Axiom A 
systems, depending smoothly on parameters E. 

Assuming the validity of the conjecture and using it to perform 
rigorously an interchange of limits, one can check (see ref. 22 for details) 
that the extra terms in the E derivatives of #,(x(j)),  lu.,(x(j)) at fixed 
history j just discussed give no contribution to the end result, i.e., they do 
not alter the validity of Onsager's reciprocity or of the fluctuation-dissipa- 
tion relation derived below. Therefore, to avoid formal intricacies, we shall 
not take into account the extra terms and we proceed by ignoring them in 
(5.4) as well as in the following. The above conjecture has a mathematical 
nature and I do not discuss its proof here: I have not attempted to prove 
it (it seems closely related to Anosov's structural stability theorem(~)). 

By using the time-reversal invariance we see that 

( Oklu. rOhff r) = Z -1 ~. Au,,~(Xj) ~r 1(.~.'1 .) Oklu, r(Xj) 63h(~r(3,)) 

= ( 2 Z ) - '  ~ (ffU.~ (.x).) 6~-'(xs) Oklu,~(xj) Ohff~(xj) 
J 

+ ff~.~(ixj) ~- ' ( ix j )  Oklu.~(ixj) O,,6~(ixj)) (5.5) 
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where Z denotes the "partition sum," i.e., the sum in the denominator of 
(5.4), and the averages are with respect to the distribution P~/2.~. 

Recalling that [see (4.5), (4.6), (5.3)] l~,~(ix)=l~.,(x), #~(ix)= 
-6~(x),  we find that this becomes 

(2Z)- '  ~ (,4~.~(xj) O~-l(xj) O, lu.,(xj) 
J 

-,,ts.,(xj) 6-{(xj) aki,,,(xj)) a,,#,(xj) (5.6) 

The derivatives at E 1 =E2 = 0 can be computed immediately by noting 
that 07 such a case, A,.,(x) As,~(x ) 3,(x)/O_,(x) -- 1 [see (4.6)]. If we use 
that (4.6) implies lu,,-l~.~= to#,, then it follows from (5.6) that [note that 
(Oh6~) = 0  at E = 0  by symmetry] 

,o I ((OkP'~Oh#~) --(Okl~.~)(Ohf~))lE=O=-~(Okf~Oh#~) (5.7) 
E = 0  

We also see that (since also (0hk6,) vanishes in the present case) 

t 0  r / 2 -  1 ~ / 2 -  I 

0kjkl~=o=~_~lim 2rL------- 5 y' Y', ((Oka(S"'.) Oh~r(S".))) (5.8) 
m = - r / 2  n = - r / 2  

where the averages in the r.h.s, are with respect to P~/2.~. 
Hence we see that, apart from a further problem of interchange of 

limits (see below), (5.8) becomes 

0kjhlE=0--2 : Z (5.9) 
where the averages are with respect to the SRB distribution (i.e., to the 
limit ofp~/=.~) at E=0 .  

The problem of interchange of limits is easily solved: under our 
assumption that the system is a transitive Anosov system the correlations 
of smooth observables decay exponentially (because they become local 
observables in the symbolic dynamics interpretation of the evolution 
provided by the Markov partitions), not only for/,, but also for/~,/2,~ (in 
the natural sense in which this may be interpreted in a finite-r case; e.g., by 
regarding the interval [ - z / 2 ,  3/2] as a circle), and uniformly in 3. 

The relation (5.9) implies that, setting Lhk = ( Ohj k > [ E = 0 ,  

Lhk = Lkh (5.10) 

follows. Note that (5.9) expresses the fluctuation-dissipation relation rela- 
tion between the transport matrix L and the current-current equilibrium 
correlation. 
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In the case of the model in Section 3 the situation is similar. If 
~qj~ e~ p~/m = 2NkB T(x) and Jq denotes the heat - q + = - Q +/L 2 received 
by the gas from the thermostat N+ per unit time and volume, then 

J ( 2 N - 1 ) Z q j ~ P j ' i / m  1 
kB----T = L ----V-- Y . , j ~  p)/m I~l OEa 

1 Jq 2N+ - 1 - Q +  1 
9 -- L 2 0 6 r q  T+ kB T + I~1 2N + kB T-+ 

(5.11) 

Hence the above argument yields, for the model in Section 3, 

J 
- e \ T k B T / o r . e = o  (5.12) 

In general we can consider changing the two parameters denoted a, b, 
the thermodynamic forces, which control the equations of motion of the 
system. Suppose that the entropy generation per unit time a has the form 

a= E Dr rQ~ (5.13) 
E pJm 

where y,r denotes that the coordinates qj are coodinates of a particle 
belonging to a group of N~ particles whose phase points are constrained by 
the rth constraint that we impose on the system (to fix the coordinates that 
would evolve with a zero Lyapunov exponent, in the thermodynamic 
limit). Let D, be the number of degrees of freedom of the rth group of par- 
ticles (in two space dimensions D,. = 2N~); then the above argument can be 
immediately generalized to yield that the flows j .  = (Oaa) and Jb = ( 0 b O )  

satisfy 

0bjal,.b=0 ~r LI2=L2 t ~r Oajbl,,b=O (5.14) 

which is a general Onsager reciprocity relation among "thermodynamic 
forces" and "currents." From (5.7) we also see that the matrix Obj, is 
positive definite. 

Note that, as mentioned above, in defining O,a, Oba one has really to 
think of a as.defined on the space of the symbolic sequences a = a(x(j)) [so 
that 

Oa Oa 0x(j) 
~ + Ox o--U 

this is conceptually different from the "naive" (Oa/Oa)(x(j)), although in the 
above models it does not affect the end reult: see Appendix B]. 
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6. R E M A R K S  

1. The models in Sections 2 and 3 have been considered as undergo- 
ing transformations at constant energy U. This is not very satisfactory, as 
one also, and mainly, wants to understand models in which the internal 
energy is allowed to change, at least when the model is such that in the 
absence of the constraint imposing constant U it still reaches a stationary 
state (i.e., if one can justify an a priori bound on the maximal kinetic 
energy that can attained before "dissipation" effects prevail). 

According to the analysis of ref. 25, Section 8, and ref. 22, this case 
could still be treated by imposing that U is constant provided the constant 
value is fixed on the basis of what could be called a dynamical equation of 
state of the system. The latter is the relation linking the stationary average 
value of the energy U to the other system parameters 

U = f ( E  ~, E2), U=f (E ,  T_, T+ ) (6.1) 

in the cases of models like those in Sections 2 and 3 modified in order to 
(while keeping reversibility) admit a priori bounds sufficient to expect 
approach to stationarity as t---, ~ ,  even though the total energy is not 
conservedfl Here f should be determined by the dynamics itself, but its 
computat ion will require mathematical difficulties that we cannot expect to 
be able to solve (in general). 

A similar analysis applies if one did wish to study the dynamics of the 
model in Section 2 with an a priori fixed total momentum in the horizontal 
direction: we expect that we can freely add to the equations of motion a 
minimal constraint force imposing the constraint P=P(E' ,E=) i  if 
P(E ~, E 2) is the average horizontal momentum in the stationary state, i.e., 
what could be called the (unknown) nonequilibrium "equation of state" of 
the system (and the implied C = c o n s t ) .  This means that considering 
modified equations of motion 

1 
q i = m p  J, p j=Fj+ E i i - ~ p / -  D (6.2) 

with the "multiplier" p given by [ (El N~ + E2N,_)/(NI + N 2 )  ] i - -  ~P/(N~ + N_,), 
should not lead to appreciably different qualitative behavior if the initial 
data are consistent with the equation of state P = P(E t, E 2) i. 

7 If so,ne simply suppresses tile constraint that U is constant for the models of Sections 2 and 
3, then it seems reasonable that the system does not approach a stationary state, not even 
when the forcing fields are small. Here f should be determined by the dynamics itself, but 
its computation will involve mathematical difficulties that we cannot expect to be able to 
solve (in general). 
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2. It is quite clear that the discussion of the previous sections can be 
extended to many other models. But it is not clear how far one can really 
extend the considerations. For instance, it would be desirable to extend, 
if possible, the considerations to a microscopic model of a macroscopic 
continuum obeying the macroscopic equations for a fluid or a mixture of 
fluids (possibly with chemical reactions allowed), as defined in ref. 9. 

3. Onsager relations are often regarded as consequences solely of the 
reversibility of the equilibrium dynamics (see, however, ref. 29); one would 
therefore be led to infer that they must hold also for our models simply 
because they could be derived "as usual," and there would be no point in 
deriving them from the chaotic principle considerably weakening the 
strength of the interpretation of the present paper as a confirmation of the 
chaotic hypothesis. 

Hence it is worth pointing out that the "usual derivation" rests on 
several assumptions, none of which is needed /f  the chaotic hypothesis is 
retained, at least in a dynamics of the type considered in the above models. 

4. The "usual derivation" assumptions are the following: 

(a) Linear law, i.e., the "time behavior of the state parameters can be 
described by linear equations" linking them to the driving forces; see ref. 9, 
pp. 36, 100. 

(b) The "Boltzmann postulate": i.e., the entropy occurring in the 
macroscopic equations at a point ~ in space is proportional (via 
Boltzmann's constant) to the logarithm of the phase space volume (in the 
microcanonical equilibrium ensemble) of the microscopic states in which 
the state variables deviate from equilibrium by the amount they actually do 
at the point x (note that this is an assumption). Therefore the entropy is 
- �89 G, a), quadratic in the deviations a from equilibrium; it has a 
maximum at zero deviations. 

(c) The equilibrium evolution is reversible. 

Then it follows that the time evolution of a fluctuation, i.e., a deviation 
from equilibrium of the order of the square root of the volume in which it 
occurs, is Ga~assian [because of (b)]. This property is used to deduce [in 
combination with (c), (a)] that the "state parameters" a, the flows j, and 
the thermodynamic forces X satisfy /I = j  = L X  and the symmetry L=LT;  
see ref. 9, pp. 101-102. 

An initial (distribution of) microscopic configurations, close to the 
equilibrium state, generates a macroscopic state in which fluctuations are 
possible: so one can consider the free evolution of a state in which the 
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initial "state parameters" have an average value off by the amount of a fluc- 
tuation size. The evolution will then satisfy the above "symmetry" relation. 

For instance, a = (a~, a2) could be the horizontal center-of-mass coor- 
dinates of the two species of particles, in model 1 above, of a small volume 
around a point ~. 

The connection with "reality" requires further assumptions. Consider- 
ing our model 1 for definiteness, suppose that we act on the system with 
small forces, thus driving an evolution of the average values of the 
"state parameters" t ~ a ( t )  and creating an entropy per unit time 
(~i~N~E ~ +ti2N2E'-)/T (see Section2; this makes sense for small fields 
when the temperature T can be identified with the average kinetic energy 
per particle). 

(d) Then Onsager supposes (see ref. 35: "As before we shall assume 
that the average regression of fluctuations obey the same laws as the 
corresponding macroscopic irreversible processes") that a fluctuation forced 
by external forces evolves as if it had occurred spontaneously by regression 
law, if X is given, X = (N~ E ~, N2E2)/T, recalling that N~- -N,  = N/2, then 

= (N/2) LE/T  [or j = (N/2) LE/T, in the notations of the present paper], 
with LI2=L21 . Note that this is done (and can only be correct) up to 
corrections O(E2), hence this famous hypothesis is often called the linear 
regression law. 

Other derivations are more fundamental and are based on kinetic 
theory ~5"9) or on the pure microscopic dynamics, ~8"9) but still they rely on 
various assumptions besides time reversibility of the equilibrium dynamics: 
see ref. 43, pp, 85-96, for a modern discussion of the matter (in the form of 
an analysis of the Green-Kubo formulas). 

5. With our chaotic hypothesis all the above assumptions (a)-(d) 
are not necessary if one considers the models in Sections 2 and 3 because 
the final result (i.e., j proportional to LE with L symmetric and positive 
definite) has been drawn without further hypotheses (other than the mathe- 
matical conjecture in Section 5). Of course, assuming the reversibility of the 
dynamics even in nonequilibrium (close to equilibrium) and the chaotic 
hypothesis is in some sense much stronger than the assumptions (a)-(d) 
[but note that the reversibility in nonequilibrium, close to equilibrium, is 
a form of assumption (c)]. It has, however, the basic advantage of being a 
conceptually simple general assumption for nonequilibrium statistical 
mechanics, which should furthermore be valid without even the restriction 
of being close to equilibrium. 

One should add that, although reversibility of the nonequilibrium 
dynamics is assumed in this paper, it is quite likely that the ideas and 
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methods can be extended to genuinely nonreversible models. Attempts at 
such applications can already be found in refs. 24, 25, and 22 and I hope 
that they can be generalized to more general physical situations quite 
beyong the, so far special, cases mentioned; see also ref. 29. 

6. A much debated question is the extension of the Onsager relations 
to the really nonequilibrium regime (i.e., not close to equilibrium). In this 
case the very notion of reciprocity becomes ill defined. The chaotic 
hypothesis in principle applies also in the nonlinear regimes, but it is 
unlikely that it can be as powerful a tool to cover deterministic versions of 
the concrete, exactly treated, stochastic models of ref. 29. 

7. A puzzling aspect of the chaotic hypothesis is that it implies that 
the system has a positive gap separating from zero the Lyapunov 
exponents, and one may have serious doubts (see refs. 34, 11, 14, and 17 
on the validity of such a strong property, so that a discussion is in order. 

This is taken up in ref. 25, Section 8, and ref. 22 by suggesting that 
there may well be many vanishing exponents [or exponents of O(N -~) if 
N is the particle number]: such exponents should be "ignored," as they 
should correspond to macroscopic evolution laws which microscopically 
will be effectively described by local conservation laws. Ils'31"33) They have 
an approximate character, unless N ~ oo, but one can think of imposing 
them as exact conservation rules by adding to the forces acting on the 
system other suitable "auxiliary" forces minimally required to achieve 
the purpose of turning the slow macroscopic observables responsible for 
the existence of the zero Lyapunov exponents into exact local conserva- 
tion rules. For instance, one can find the auxiliary forces by applying the 
Gauss principle of  least constraint (see Appendix A). The dynamical system 
obtained in this way should be one to which the chaotic hypothesis should 
apply, giving us hope that the analysis of the present paper might be 
generalizable to rather more general cases. ~'-z~ 

8. A comment can be made at this point (at a referee's request) about 
the physical meaning of Gaussian thermostats. As suggested in refs. 18 and 
19, one can expect that nonequilibrium stationary states are describable in 
several equivalent ways, as in the corresponding equilibrium cases many 
ensembles have the same physical content. Therefore Gaussian thermostats 
may be equivalent to other thermostats, with a more physical look. 
However, as argued also in remarks 1 and 7 above and in more detail in 
ref. 22, it seems clear that not all thermostats can be equivalent, as each 
thermostatting mechanism has a physical meaning and it may correspond 
to different stationary states. The antonym of "equilibrium" is "non- 
equilibrium," but the latter concept is much wider and it accommodates a 
larger variety of phenomena. 
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9. A referee remarks that it is, in fact, easy to generalize the above 
derivation of Onsager reciprocity to the case where the microscopic time 
reversal requires also the reversal of the applied fields a with some time 
parities e,. In that case, the so-called Onsager-Casimir relations (see ref. 9, 
Chapter VII, Section 4) are valid by the same proof. 

APPENDIX A. THE GAUSS MIN IMAL CONSTRAINT 
PRINCIPLE 

Let q~(/~, x ) = 0 ,  x =  {/~j, xj}, be a constraint and let R(/r x) be the 
constraint reaction and F0k, x) the active force. 

Consider all the possible accelerations a compatible with the constraints 
and a given initial state ~k, x. Then R is ideal or satisfies the principle of 
minimal constraint if the actual accelerations a i =  (1/mA(F;+ R,.) minimize 
the efJort 

1 (F i_miaA 2 ~ ( F i - m i a A ' 6 a i = 0  (A.1) 
i = 1 171 i  i = 1 

for all possible variations 6a; compatible with the constraint ~. 
Since all possible accelerations following /~,x are such that 

Z~= l O~,q~(~, x).  6ai = 0 we can write 

Fi - -mia i - -o~O~iqg(x  , x ) = 0  (A.2) 

with ~ such that (d/dt) q~(/~, x ) =  0, i.e., 

Zi ( i~. O~ ~o + ( 1/mA F~. O.~,q~) 
= ' " (A.3) 

)-"4 m 7 1 (C9.::, q2 ) 2 

which is the analytic expression of Gauss' principleJ 32~ 
The Gaussian principle has been somewhat overlooked in the statisti- 

cal mechanics literature: its importance has been only recently brought 
again to attention (see the review in ref. 30). A notable exception is a paper 
in which Gibbs ~-'3~ develops variational formulas which he relates to the 
Gauss principle of least constraint. 

APPENDIX B. VANISHING OF THE CORRECTIONS TO (5.9) 

This appendix refers to the last paragraph of Section 5. Starting from 
(5.2), it is appropriate, if one wants to keep track of the extra terms arising 
from the proper definition of Oaa, to regard a(x) as a function s(e, x) of 
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two arguments (thus making explicit mention of the e dependence of or). 
Likewise the factors lu.~(x), I~,~(x) will be regarded as functions 2u,~(e, x) 
and 2~,~(e, x), etc. In this way the derivatives of s(e, xj) and 2.(e, xj) can be 
easily followed. 

The algebra of Section 5, performed without ignoring the e dependence 
of the points xj, can be easily performed and it leads to some extra terms 
in (5.4). We write the result, for brevity, as follows: 

OkJhle=o=(5.14)+(O,.SOkXOi, S) le=O+(O,,SOhX)l ,=O (B.1) 

and the first correction term vanishes because s(0, x ) -  0, while the second 
extra term vanishes because 

(axks al, x )  1o=o = Ok(OhS)le=o - (O~,Oks)le=o (B.2) 

which is zero by time-reversal symmetry of the equilibrium (e = O) distribu- 
tion. 
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